“十五”期间973计划在纳米科学、生命科学、信息科学、地球科学、数学、物理学和化学等学科的若干领域取得一批原创性成果,在SCIENCE、NATURE及相关学科一流杂志发表了系列重要论文,在国际上占据了重要的一席之地。非线性光学晶体、量子信息和通信、超强超短激光等方面研究居国际前列;纳米材料和纳米结构、蛋白质结构与功能、脑与认知、动物克隆、创造新物质的分子工程学、古生物学、海洋科学等领域取得系列创新成果,整体研究水平显著提高,在国际上产生重要影响;数学机械化、辛几何算法等方面保持我国特色和优势。
非线性光学晶体研究保持国际领先地位,在紫外和深紫外非线性光学晶体的设计、生长和原型激光器的研制等方面取得了创新成果。成功地生长出20×10×1.8mm3全透明的KBBF单晶,突破了以往该晶体的厚度始终未能超过1mm的极限;在国际上首次提出KBBF棱镜耦合技术,实现了深紫外200nm-193nm的激光有效输出,从而跃过了实现深紫外倍频光输出的技术门槛,向第四代光源的实现迈出了重要的一步,将对未来光电子产业竞争产生深远影响。
量子信息和通信研究取得了一批有国际影响的重要创新成果。多粒子纠缠态的制备与操纵研究方面,在国际上首次实现了五粒子纠缠态的制备与操纵,并利用五光子纠缠源在实验上演示了“终端开放”的量子态隐形传输,先后被美国物理学会和欧洲物理学会评选为2004年度国际物理学十大进展之一。在量子密钥分配方面,设计了一种具有良好单向传输稳定性的量子密钥分配实验方案,实现了150公里室内量子密钥分配实验;利用实际通信光缆,实现了从北京经河北香河到天津长度125公里的量子密钥分配。
超强超短激光研究在CPA新一代超强超短激光原理、方法的开拓及小型化OPCPA超强超短激光系统的集成创新取得重大进展,实现了3.67TW的输出功率,并研制成功具有高光束质量和国际一流水平整体性能的CPA超强超短激光装置;在此基础上,首次在实验上观测到高次谐波谱双峰分裂新现象,提出利用原子系统的量子相干控制产生高强度相关原子束的新机制,建立了强场相互作用的非微扰量子电动力学理论模型与计算方法,并应用于解释和预言强场激光物理实验现象。
纳米材料和纳米结构研究取得系列创新成果。纳米碳管研究方面,利用模板和有机物催化热解法相结合制备单壁纳米碳管的技术,被国外同行认为是目前碳纳米管四种主要制备方法之一。用同位素标记方法探明了碳纳米管的生长过程,采用二次放电法制备出超细碳纳米管,利用超顺碳纳米管阵列拉制出碳纳米管线,发展了浮动催化法制备双壁纳米管、醇热还原法宏量制备碳纳米管等制备方法。在GaN单晶一维纳米丝有序阵列的制备等方面,研制成功芯部为GaN、外层为BN、直径为50nm的同轴纳米电缆,并利用单壁碳纳米管组装出世界上最细且性能良好的扫描隧道显微镜用探针,在国际上产生了重要影响。碳纳米管灯丝的偏振白炽光谱方面的工作为纳米碳管在照明领域的应用开辟了一条新途径。发现块体纳米铜的超延展性,其变形过程主要由晶界行为所控制而并非是传统的晶格位错行为;发现孪晶界面诱导纳米铜的高强度和高导电性特性,表明通过纳米尺度上的结构设计可以优化材料性能。提出了二元协同产生超双疏性能的新原理,设计合成了具有仿生超双疏功能的界面结构材料,发现温场和光场控制的超疏水/超亲水可逆转变的“开关效应”。采取低温生长方法成功地在硅单晶衬底上制备出了具有原子级平整度的铅薄膜,并观察到铅薄膜超导转变温度和热膨胀系数随薄膜厚度振荡等奇特的材料性质。
蛋白质结构与功能研究取得突破。首次获得了菠菜捕光复合体(LHCII)2.72Å分辨率的三维结构解析,这是目前为止第一个原子水平解析的LHCII三维结构,被认为是近年来光合作用研究的一项突破,研究成果以article形式发表在NATURE杂志。成功解析了线粒体呼吸链膜蛋白复合物II及其与抑制剂复合体的晶体结构,填补了线粒体呼吸链研究的一个空白,为研究线粒体呼吸链电子传递系统和与该复合物相关的人类线粒体疾病提供了一个真实可用的模型,研究成果发表在CELL杂志。
脑科学研究取得突破,在大脑的认知、神经信号传导、神经生长等方向取得了一批创新成果,在SCIENCE、NATURE、NEURON等国际著名刊物发表了一批重要论文。在国际上开创了果蝇面对两难线索的抉择研究,发现果蝇可以学习视觉模式的多个线索来指导飞行定向行为,并证明果蝇脑的蘑菇体参与决择过程,为理解脑的这一智能行为提供了更为简单的模型生物和新的抉择范式。在神经发育的一些基本过程的调节机制研究中发现一种称为CSK的蛋白激酶在神经细胞的发育过程中分布有极性,在轴突中的活性比树突中的低,控制着神经细胞的极性。在认知科学研究方面,提出了拓扑性质初期知觉理论,对半个世纪以来占统治地位的特征分析理论提出了挑战,进一步研究发现了支持该理论的磁共振成像的生物学证据。
转基因属间克隆鱼的成功诞生,标志着我国在动物克隆基础研究领域取得新的突破。以转MThGHF4代红鲤的囊胚细胞为供体,以金鱼去核卵为受体进行属间的核移植,成功获得转基因属间克隆鱼,并首次从分子水平发现细胞质影响克隆鱼发育的新证据。
免疫学研究取得新的重要突破,发现了一种具有特殊负向免疫调控功能的新型DC亚群,对传统免疫学中普遍认为的成熟DC不再增殖的传统理论提出了挑战,有助于深入认识免疫应答的机制以及多种疾病的发病机理。
创造新物质的分子工程学方面,凝聚了该领域的5位院士、14位国家杰出青年基金获得者和3个“创新研究群体”开展创新研究,做出了高水平的研究成果,在SCIENCE、NATURE、ACCOUNTOFCHEMICALRESEARCH、JACS等化学领域国际权威杂志发表论文40多篇,在国际上产生了重要影响。
古生物研究方面,以我国丰富的古生物资料为基础,在后生动物、脊椎动物、鸟类等重要生物类群的起源,寒武纪生物大爆发,古生代、中生代和新生代的生物大辐射,古生代三次生物大灭绝及其后的复苏,探索生物和环境协同演变的基本规律等方面,取得了一系列重大发现和创新性成果,以第一作者在SCIENCE和NATURE杂志发表论文32篇,受到国际学术界的高度关注。其中“澄江动物群与寒武纪大爆发”研究获2003年国家自然科学奖一等奖;湖南花垣排碧剖面被确立为寒武系内部第一个全球界线层型剖面(“金钉子”)。
青藏高原演化及环境效应方面,对印度大陆碰撞时限、过程和高原南北边缘碰撞模式等提出了新的看法;建立了高原不同地区高分辨率环境记录,揭示了2万年、特别是近2千年以来气候环境变化特征。首次全面系统地研究喜马拉雅山、青藏高原的隆升与亚洲季风气候的关系。研究结果表明,在距今1000-800万年前青藏高原的隆升导致了亚洲季风的出现,距今360-260万年青藏高原的加速隆升奠定了亚洲季风气候的基本框架。说明亚洲季风的演化与高原的阶段性隆升密切相关。
结合大陆钻探工程,在大陆深俯冲等方面取得多项突破性进展。揭示了板块会聚边界深部连续的物质组成、三维结构、壳幔物质交换及地球物理状态;证明地质历史上曾发生板块携带了巨量物质深俯冲到100公里以下地幔深处的重要地质事件;研究发现榴辉岩矿物中结构水(OH)脱水而引起的不稳定性会诱发断裂,可以引起高温地震,从而解释了地幔转化带中深源地震的成因,该成果于2004年发表在NATURE杂志。
海洋科学研究方面,建立了我国近海生态系统动力学理论体系框架,首次从生态系统水平上建立了以鯷鱼为例的配额捕捞评估与管理模型,发现中华哲水蚤在温带陆架浅海度夏策略,被认为是国际全球海洋生态系统动力学(GLOBEC)计划实行以来有代表性的研究成果之一,应GLOBEC科学指导委员会和北太平洋科学组织(PICES)邀请,多次在国际科学会议上报告,产生了重大的影响。在近海环流的形成机理和变异方面,揭示了东海黑潮“多核结构”的形成机理;发现东海南部外陆架环流的存在,模拟出“流-涡结构”的分布和变异形态;阐述了南海环流“多涡结构”演化规律;发展了风-浪-潮-流耦合数值模式。
数学机械化方法研究方面,证明了某类代数系统全局优化的“有限核”定理,给出了这类系统完整的全局优化方法,为众多科学领域全局优化提供了新方法,并完成了数学机械化自动推理平台;从理论上证明了任意可逆线性变换可以整数实现,并给出了一个充要条件和整数实现的快速算法,基于此理论提出的“多成份变换”技术已被JPEG2000图像压缩国际标准采纳。
大规模科学计算研究中,发展了适合求解大型偏微方程组的自适应算法、辛算法、多尺度算法等算法;首创性地将辛算法用于大气海洋GPS资料同化,并建立了新一代大气环流模式GAMIL1.0。
在高性能优化算法研究上,发展了能够快速寻找有效解空间和算法的创新方法,将求解同等规模旅行商问题实例的稳定解质量和求解超大规模实例的计算速度分别提高了一个数量级;发展了多空间搜索等大规模优化算法,并应用于互联网搜索、移动通信与多媒体通信系统、超大规模集成电路设计、电力信息智能化管理系统等技术领域。(科技部提供)